Sveriges mest populära poddar

Machine Learning Guide

MLG 015 Performance

43 min • 7 maj 2017

Try a walking desk to stay healthy while you study or work!

Full notes at  ocdevel.com/mlg/15 

Concepts
  • Performance Evaluation Metrics: Tools to assess how well a machine learning model performs tasks like spam classification, housing price prediction, etc. Common metrics include accuracy, precision, recall, F1/F2 scores, and confusion matrices.
  • Accuracy: The simplest measure of performance, indicating how many predictions were correct out of the total.
  • Precision and Recall:
    • Precision: The ratio of true positive predictions to the total positive predictions made by the model (how often your positive predictions were correct).
    • Recall: The ratio of true positive predictions to all actual positive examples (how often actual positives were captured).
Performance Improvement Techniques
  • Regularization: A technique used to reduce overfitting by adding a penalty for larger coefficients in linear models. It helps find a balance between bias (underfitting) and variance (overfitting).
  • Hyperparameters and Cross-Validation: Fine-tuning hyperparameters is crucial for optimal performance. Dividing data into training, validation, and test sets helps in tweaking model parameters. Cross-validation enhances generalization by checking performance consistency across different subsets of the data.
The Bias-Variance Tradeoff
  • High Variance (Overfitting): Model captures noise instead of the intended outputs. It's highly flexible but lacks generalization.
  • High Bias (Underfitting): Model is too simplistic, not capturing the underlying pattern well enough.
  • Regularization helps in balancing bias and variance to improve model generalization.
Practical Steps
  • Data Preprocessing: Ensure data completeness and consistency through normalization and handling missing values.
  • Model Selection: Use performance evaluation metrics to compare models and select the one that fits the problem best.
Förekommer på
Podcastbild

00:00 -00:00
00:00 -00:00