Try a walking desk to stay healthy while you study or work!
Notes and resources at ocdevel.com/mlg/25
Filters and Feature Maps: Filters are small matrices used to detect visual features from an input image by applying them to local pixel patches, creating a 3D output called a feature map. Each filter is tasked with recognizing a specific pattern (e.g., edges, textures) in the input images.
Convolutional Layers: The filter is applied across the image to produce an output which is the feature map. A convolutional layer is composed of several feature maps, with depth corresponding to the number of filters applied.
Image Compression Techniques:
Max Pooling: Max pooling is a downsampling technique used to reduce the spatial dimensions of feature maps by taking the maximum value over a defined window, further compressing and reducing computational load.
Predefined Architectures: There are well-established predefined architectures like LeNet, AlexNet, and ResNet, which have been fine-tuned through competitions such as the ImageNet Challenge, and can be used directly or adapted for specific tasks in computer vision.