Sveriges mest populära poddar

Machine Learning Guide

MLG 029 Reinforcement Learning Intro

43 min • 5 februari 2018

Notes and resources:  ocdevel.com/mlg/29 

Try a walking desk to stay healthy while you study or work!

Reinforcement Learning (RL) is a fundamental component of artificial intelligence, different from purely being AI itself. It is considered a key aspect of AI due to its ability to learn through interactions with the environment using a system of rewards and punishments.

Links:

Concepts and Definitions
  • Reinforcement Learning (RL):
    • RL is a framework where an "agent" learns by interacting with its environment and receiving feedback in the form of rewards or punishments.
    • It is part of the broader machine learning category, which includes supervised and unsupervised learning.
    • Unlike supervised learning, where a model learns from labeled data, RL focuses on decision-making and goal achievement.
Comparison with Other Learning Types
  • Supervised Learning:
    • Involves a teacher-student paradigm where models are trained on labeled data.
    • Common in applications like image recognition and language processing.
  • Unsupervised Learning:
    • Not commonly used in practical applications according to the experience shared in the episode.
  • Reinforcement Learning vs. Supervised Learning:
    • RL allows agents to learn independently through interaction, unlike supervised learning where training occurs with labeled data.
Applications of Reinforcement Learning
  • Games and Simulations:
    • Deep reinforcement learning is used in games like Go (AlphaGo) and video games, where the environment and possible rewards or penalties are predefined.
  • Robotics and Autonomous Systems:
    • Examples include robotics (e.g., Boston Dynamics mules) and autonomous vehicles that learn to navigate and make decisions in real-world environments.
  • Finance and Trading:
    • Utilized for modeling trading strategies that aim to optimize financial returns over time, although breakthrough performance in trading isn’t yet evidenced.
RL Frameworks and Environments
  • Framework Examples:
    • OpenAI Baselines, TensorForce, and Intel's Coach, each with different capabilities and company backing for development.
  • Environments:
    • OpenAI's Gym is a suite of environments used for training RL agents.
Future Aspects and Developments
  • Model-based vs. Model-free RL:
    • Model-based RL involves planning and knowledge of the world dynamics, while model-free is about reaction and immediate responses.
  • Remaining Challenges:
    • Current hurdles in AI include reasoning, knowledge representation, and memory, where efforts are ongoing in institutions like Google DeepMind for further advancement.
Förekommer på
Podcastbild

00:00 -00:00
00:00 -00:00