Sveriges mest populära poddar

Vanishing Gradients

Episode 56: DeepMind Just Dropped Gemma 270M... And Here’s Why It Matters

46 min • 14 augusti 2025

While much of the AI world chases ever-larger models, Ravin Kumar (Google DeepMind) and his team build across the size spectrum, from billions of parameters down to this week’s release: Gemma 270M, the smallest member yet of the Gemma 3 open-weight family. At just 270 million parameters, a quarter the size of Gemma 1B, it’s designed for speed, efficiency, and fine-tuning.

We explore what makes 270M special, where it fits alongside its billion-parameter siblings, and why you might reach for it in production even if you think “small” means “just for experiments.”

We talk through:

  • Where 270M fits into the Gemma 3 lineup — and why it exists
  • On-device use cases where latency, privacy, and efficiency matter
  • How smaller models open up rapid, targeted fine-tuning
  • Running multiple models in parallel without heavyweight hardware
  • Why “small” models might drive the next big wave of AI adoption

If you’ve ever wondered what you’d do with a model this size (or how to squeeze the most out of it) this episode will show you how small can punch far above its weight.

LINKS

🎓 Learn more:

Senaste avsnitt

Podcastbild

00:00 -00:00
00:00 -00:00